ADVANCE Pre-Tenure Faculty Workshop

"Taking the Pulse of Your Graduate Students' Experiences"

Graduate Student Evaluation Forms

Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidelines for Graduate Students in the Hydro-Biogeochemistry Research Group</td>
<td>2</td>
</tr>
<tr>
<td>Author: Rebecca Neumann, Civil & Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>Cossairt Lab Annual Personal Evaluation</td>
<td>7</td>
</tr>
<tr>
<td>Author: Brandi Cossairt, Chemistry</td>
<td></td>
</tr>
<tr>
<td>Semiannual Activity Report-Version 1</td>
<td>10</td>
</tr>
<tr>
<td>Author: Becky Alexander, Atmospheric Sciences</td>
<td></td>
</tr>
<tr>
<td>Semiannual Activity Report-Version 2</td>
<td>11</td>
</tr>
<tr>
<td>Author: Becky Alexander, Atmospheric Sciences</td>
<td></td>
</tr>
<tr>
<td>Earth & Space Sciences Graduate Scholarly Activity Report</td>
<td>13</td>
</tr>
<tr>
<td>Author: Earth & Space Sciences Department</td>
<td></td>
</tr>
<tr>
<td>“Collaborating with Students” Resources</td>
<td>19</td>
</tr>
<tr>
<td>Author: National Association of Geoscience Teachers</td>
<td></td>
</tr>
</tbody>
</table>
Guidelines for graduate students in the Hydro-Biogeochemistry Research Group

Most students enter a relationship with a thesis advisor without a clear idea of what they can expect so I have compiled this handout to give you some idea of what I expect of you as student and what you can expect of me as an advisor.

My top priority is for both of us to communicate and set mutually-agreed-upon goals and then both do our best to make those goals into reality. As one of my students, I plan to treat you as a junior colleague who is maturing into a professional engineer or scientist. This means that you can actively co-create opportunities to meet your goals, and also puts a large responsibility on your shoulders to live up to the expectations of performance that are required of a colleague.

I hope you learn:
- to do good, sound, detail-oriented science
- to take ownership of your research project and become an expert on your topic
- creative problem solving and a sense of fearlessness about technical issues and new ideas
- technical writing and presentation skills, a sense of professionalism and project management
- to support colleagues and value a collegial, challenging, fun and interdisciplinary environment.

Your time
Graduate degrees in North America generally take ~2 years for a Masters and 4 to 5 years for a Ph.D. You can expect the Ph.D. to take 6 years if you do not already have a Masters degree. It is my goal to make sure that you graduate within this time frame. The Masters and Ph.D. degrees require that you take courses and conduct research. The time commitment to research tends to be one of the most important issues for graduate students and advisors. Each term, we will sit down together and identify reasonable research goals to be completed by the end of that term. We will write them down and revisit them periodically throughout the term during weekly meetings. As long as I can see progress towards our mutually-agreed-upon goals at a reasonable rate, I will not pay any attention to how you spend your time. However:

- In your first few years as a student, I ask that you plan to spend time in lab or at your desk during core work hours (i.e., 10 am – 3 pm). This will enable easy communication and interaction with both your peers and me. We can discuss alternative work locations as you progress through your degree.
- I will expect you to work during academic ‘holidays’ such as spring break, unless you are taking this time as your vacation. The graduate student union has negotiated one week of vacation per academic quarter. I ask you to alert me to your vacation plans and put the dates you will not be at work on the lab calendar.

I expect you to regard graduate school as you would a job in a company, which means that you show up to work every weekday (unless you are on vacation) and focus on your work when you are here. As a graduate student, your job is to learn, to conduct research, and, depending on your appointment, to teach. You are getting paid (via a living stipend, benefits and tuition) for this effort. If you are on a research appointment (RA) you are being paid from research grants (i.e., tax-payer money) to conduct research and
the grant making agencies expect to see research progress as a result of this investment. Even if you are taking classes, if you are on a RA, it is important that you make research a priority — the research is what is paying your salary and tuition. If you are on a teaching appointment (TA) you are being paid by the department to teach. However, if you want to graduate within the time frame discussed above, it is important that you still make some basic research progress when you are a TA.

I am responsible for financially supporting you, as well as all the students and postdoctoral researchers in my research group; therefore, I request that as a member of my group you use your time at work wisely. The choices you make about how you use your time impact me, as well as all the other members in the research group. If you use your time poorly, it will take you longer to complete your degree, forcing me to find more resources to support you and taking away resources from others in the group. Because the time-management choices you make impact everyone in the research group, I have developed guidelines that I ask all group members to follow. Essentially, when you are at work you need to focus on your work (i.e., learning, teaching and conducting research) and limit the number of outside distractions. Thus I ask that when you are at work:

- You do not engage with social media. No use of Facebook, Instagram, Twitter, LinkedIn, etc.
- You do not g-chat, text, skype with your friends and family. I understand that you will need to communicate with friends and family to coordinate logistics (e.g., when you will be home or when you can meet someone somewhere). This type of communication is brief, contained and completely acceptable. What I am asking is that you do not have long on-going conversations with your friends and family while you are at work.
- You do not visit websites that have no relevance to your job of learning, teaching and conducting research.
- You limit your use of email. Email is an insidious time sink because it feels like it is work related. However, most of what you need to get done while at work does not actually require email. If you have the self-discipline, the best practice is to check email only two to three times during the workday (this is what I try to do). I will never send anything time sensitive over email. I will text or call you if something is urgent. At a minimum, you must turn off all email alerts. These alerts are extremely distracting; they pull your mind away from what ever it was focused on.

As a rule of thumb, you can gage if you are using your time wisely or not by considering what would be acceptable for an employee in a company. If you had to bill out your time to a client, how much of your workday could, in good conscious, be billed? By following the guidelines above, my hope is that you will be able to say that almost all of time at work could be “billed.” Research is a slow and labor-intensive process, and progress is best achieved by a focused and steady application of effort every workday.

Sometimes, early in a project students are unclear about what they should be doing — this is normal and please come and see me. It can be difficult to know how to divide your time between reading and writing and ‘real work’. I have never known a student that has over-allocated time to writing and reading — most people underestimate how long those things take. I have ‘how to’ guides to help students on how to read a paper, how to review a paper, and how to write a paper. It is crucial to read the academic literature as you work on your research project, problem solve or learn a new technique is crucial — it is said that an hour in the library can save a week (or more) in lab.
If you find yourself struggling with time management, writing or reading, please come and talk with me. I have a number of time management and organizational tricks that work for me and I am happy to share if you would like. Similarly, if you are struggling with motivation or other issues, please come talk to me so we can address the problem.

My time
I try to meet with each student individually every week for about an hour – sometimes longer, especially at the beginning of a project. We will set up a blog shared between the two of us, and for these meetings I ask you to post to the blog:

- What you have accomplished during the past week.
- How this progress aligned with your goals for the past week?
 - If your progress was less than anticipated, what was the problem? We will work to address this problem.
- What are your goals for the coming week?
- What, if anything, I can help you with.
- How is your weekly progress aligning with your goals for the quarter?

If you have an urgent or quick question, and you see my office door open, you are welcome to ask me; but if I am occupied with something else I may ask you to come back. For longer conversations, I prefer to set up a meeting so that both of our attention will be focused on the topic. If you simply need something signed, please either place the document in my mailbox and send me an email letting me know you did this, or save the paperwork for our weekly meeting. Throughout the year I like to hold joint group meetings with Dr. Dodd’s and Dr. Gough’s research groups where research results are presented and discussed. This is a great opportunity to work on presentation skills and on answering research questions.

Writing, authorship and ideas
I hope that you write a manuscript-based thesis that will have 1-2 papers (Masters) or 3-4 papers (PhD) that will be largely submitted to journals while you are still here. I expect you to submit a majority of your papers before you graduate. Writing and submitting papers is challenging, and I am happy to work closely with you to write paper outlines, rapidly review sections and help however I can. Given the importance and difficult of writing:

- I currently ask all lab group members to write everyday. We will decide together what you should be writing, and we will track writing progress by setting up a shared document in Google Drive. You can decide what type of daily writing goal works best for you: xx number of hours spent writing, xx number of words written, etc.
- I will try to review your writing every week before our meeting. It will be helpful for me if you add new text to your document as suggested edits so I can clearly and quickly see what is different from the last time I reviewed the document.

The length of the paper you write and the target journal to publish it in will depend on the research subject and quality of the results; I generally aim for high-impact journals. I suggest reading *How to Write a Lot* by Paul Silvia (I have a copy in my office you can borrow).
Now comes to the question of co-authorship: you will be an author on a published paper if you have provided a substantial portion of the intellectual and physical work involved, and have completed your portion of the work satisfactorily. This involves participation in both the writing and research work involved. You will be first-author if you contributed the majority of the intellectual and physical effort, and completed the writing. If someone else ends up writing the document (e.g., because you graduate and leave before you wrote the paper and you show no progress with the writing), then the person who ends up writing the paper will be first author, and you will likely be placed as second author. Like all things, I encourage an open dialogue about this topic.

I strongly value new ideas and working in a research environment where new and interesting ideas are bubbling up all the time from me and my students. So don’t be shy about sharing new, wacky or strange-sounding ideas - you never know where they go. Academics often get attached to ‘this is my idea’ and people have imperfect memories so I always encourage an open dialogue about who contributed to an idea being born, developed and brought to fruition. Finally, it is important to have strong integrity and honesty in your work – never skewing, biasing or misrepresenting results to fit a previous idea.

Data recording and backing up
Tracking and recording work is very important. Taking clear notes feels very boring but pays off massively later when you are writing. This can be in a field notebook, laboratory notebook, or an excel sheet where you keep track of model runs, etc. depending on the project. It is also important to link electronic data files, both raw and processed, to a field notebook or laboratory notebook that contains information about the electronic data. I find that including the lab notebook name and page number in the name of the data file is best (e.g., ICPMS_RBN2p40: this electronic data file would be from an ICPMS run that is described in my lab notebook called RBN #2 on page 40). In addition, samples stored in the lab that you collect or generate need to be linked to a field notebook or laboratory notebook. In the moment, you will feel like you could never forget where, when, how or why a sample was collected. But in a few months or years you will forget. In addition, I need to be able to find information about samples in the lab after you graduate. Backing up your work every day is crucial – we all know a story of a student that didn’t to this.

- Currently, we have a lab server that I will ask you to back up data to and relevant project information to on a monthly, if not more regular basis.
- Taking photos of lab and field notebook pages every few days is also good practice, so that if something happens to these notebooks, you don’t lose all of the data stored in them.
- Finally, when you are done with your degree, your files on the server should be organized and explained with an overview document so that future students and I can follow your work and use data you produced.

Safety
Field and lab safety is paramount. I require training before anyone can work in the lab — please be sure you receive this training and that it is documented. If you don’t know whether a particular action is dangerous, don’t do it until you consult me or someone else who knows.
Bottom line
I try to do everything I can to help you be a successful, productive student that is having fun and learning lots. Let me know how I can make that happen.

Acknowledgment
Please sign below indicating that you understand the guidelines and expectations outlined above for graduate students in the Hydro-Biogeochemistry Research Group, and that you will, to the best of your ability, strive to follow these guidelines and meet these expectations. Please return a signed version of this document to Becca.

Name: _________________________________ Date: ______________

Some Helpful Logistical Items to Get you Started

Ask Becca to arrange for Nick Burmeister (in More Hall basement) to get your UW Husky card set up to get access to:
1. Our lab (Wilcox 169)
2. More Hall (near main entrance)
3. CEE computer lab in basement of More (students refer to this as "the Dungeon")
4. CEE computer lab on 3rd floor of More

Note that, if you don't like your UW card being the card with this access, Nick can program any magnetic card. So, if you have an old Safeway card, or something similar, that you would prefer to use, he can program those instead.

Ask Becca to arrange with the department office (More 201) to give you keys to:
C108 - field room in Wilcox (Wilcox 167)
C164 - entrance into Wilcox
7001 - entrance into More Hall, near basement-floor structures lab
7079 - 3rd floor labs, More Hall
8008 - 3rd floor labs, More Hall

You need to work with Becca or current students/postdocs to get access to:
1. UW Chemistry stockroom – you will need to set up an account there
2. Lab server
3. Dropbox
4. Lab group Google calendar
5. Purchasing options – there are different methods of purchasing items for research work
Cossairt Lab Annual Personal Evaluation

Please rate yourself according to the above classification scale in the categories listed below. Explain your ratings; on the back of this sheet brainstorm strategies for improvement. (Note, very few highly qualified and capable scientists will ever be able to achieve a “distinctive” rating.)

A) Work habit

Distinctive – Quality over quantity is of utmost importance. You work a solid 5.5 days per week and while you are at work, you are working. You are reading to further your knowledge of chemistry in general and the literature relevant to your project in between experiments. You plan your experiments for the next day before leaving for the night and arrive knowing your plan of action for the day. You are efficient and organized. No experiment is wasted in accomplishing your publication goals. You have a clear plan for completing your PhD.

Very Strong – You work hard in an efficient and organized manner. You are dedicated to your science and think critically about it to optimize your productivity. You may not always be running the right experiments, but persistence pays off. You work at least 5.5 days per week and are well focused during that time.

Strong – You work more hours than you need to and run more experiments than you need to due to lack of organization (quantity over quality). You are on top of the current and past literature relevant to your project. You know what to do to further your project each work day, but may not plan more than a day or two in advance. You watch youtube or read the news periodically throughout the day, but this does not interfere with or take precedent over chemistry ever.

Issues – You work standard hours, but do not arrive knowing what you will do that day. You waste significant amounts of time inefficiently planning your day, but you are able to execute one or two experiments/tasks per day. You have no clear path laid to obtain your PhD but you are accomplishing some science. There is some hope.

Council to Leave – You accomplish on average one experiment per week. You are not working steadily to progress your project. Your work habits are erratic and disorganized. You spend a significant portion of your day on non-chemistry related items that are not relevant to furthering your career or science. You “work” or are at work the bare minimum of hours (9-5, 5 days). You do not plan your experiments and do not know what experiments you need to run on a day-to-day level. You have no idea what your research project is or how it fits into the themes of the lab and broader research community.

B) Ability to work independently and creatively

Distinctive – You contribute new knowledge and understanding to the group on your own project and those of others. You are able to read the literature, interpret your own data, and synthesize this information to form well-reasoned explanations of your experiments. You dictate the direction of your project with a clear and focused scientific approach. You are able to design experiments that are not simply new takes on known themes, but are able to develop chemistry that contributes to expanding our understanding of science in novel ways. You don’t need much direction but know exactly when you do need it and do not hesitate to seek out input from members of your scientific community.

Very Strong – You are capable of long-term project planning, but are lacking some confidence in executing new directions. You operate independently on a day-to-day basis with little needed outside input. Others look to you for experimental advice and creative solutions to experimental challenges. If left
to your own devices, you would publish papers that could be easily published in tier-2 journals, but need a bit of guidance to push boundaries.

Strong – You are capable of leading your own project for weeks at a time, but still need help organizing for the long term and deciding which experiments will answer the questions you are asking. You come up with creative solutions to experimental challenges. Your approach is typically the one another well-trained person in your field would take when presented with the same challenge. You are persistent and do not give up easily.

Issues – You have difficulty designing experiments to meet your long-term objectives. You can operationally run your experiments, but do not do the right ones in general. You are able to reproduce experiments in the literature, but your lack of creativity limits your ability to go further.

Council to Leave – You are unable to design your own experiments or interpret your own data and do not seek the help or advice of others. You are not interested in learning new skills or helping others when called upon. You allow your project to sit for weeks without progress and wait for others to point out to you that this is happening. You have difficulty reproducing experiments in the literature that are central to your project.

C) Group meeting and presentation skills

Distinctive - Exceptionally well thought-out presentations with complete structure (intro, results, conclusions), completed with only 1-3 typographical errors, publication ready graphics, complete knowledge of all relevant literature with complete citations, clear vision of next steps for research based on findings

Very Strong - Complete presentation with all needed graphics and data presented in clear format, only a few minor errors in graphics, adequate support with relevant literature and citations, good interpretation of results with 3-4 next experiments in mind

Strong - All relevant data presented with sound interpretation, quality of graphics is adequate with only some errors, only few key literature references, mostly complete interpretation of results but able to reach conclusions with direction, only single next step understood

Issues - Prepared to discuss but without appropriate data presented or schemes created, errors in logic and interpretation of results, not clear understanding of why experiment is relevant to objective of project

Council to Leave - No presentation ready or prepared, lack of any structure in presentation, major errors in the results and findings presented, no knowledge or citation of relevant literature, unable to make any logical conclusions

D) Lab notebook and record keeping

Distinctive – Exceptionally well thought-out notebook entries with complete information (purpose, reagents table, procedures and observations, conclusions, future directions) and all relevant literature citations. Organized data maintained in print and digital form. All digital data is backed up in at least 2 locations on a weekly basis.

Very Strong – All information necessary to accurately repeat the experiment is present in the notebook. Comments are made with regards to stumbling blocks and possible fixes. You have a clear purpose and
sound conclusions. Your data is organized in print and digital form in a single location and is regularly backed up on a weekly basis.

Strong – All information necessary to accurately repeat the experiment is present in the notebook. Data is organized in print and digital form and is backed up monthly.

Issues – Data is disorganized (but complete) and notebook is difficult to follow. Conclusions are missing or not based on clear interpretation of the experimental observations. You do not regularly backup your data.

Council to Leave – No trained chemist would be able to follow what is presented in your lab notebook due to lack of information. No structure is present in data organization, data is difficult to find (or missing), and data is not regularly backed up.

E) Leadership and initiative

Distinctive – Exceptional ability to identify and solve problems related to the lab both in terms of research and lab functioning. You never have to be told something needs to be done in the lab; you have already done or contacted someone to do it. This applies to organization, supplies, cleanliness, safety, experimental design, equipment, etc. You are always willing and able to help others in matters of research and experiment design when asked and offer help when it is needed.

Very Strong – You go into lab everyday wanting to make it a better environment for yourself and your colleagues. You do at least one thing every day to positively impact the lab atmosphere that you were not asked to do.

Strong – You care about the efficient functioning of the lab and are available and able to help others. You may not notice everything right away, but when you notice it, you take care of it promptly, never saying “I can do it tomorrow”.

Issues – You are conscious of problems in the lab but are generally lazy or ignore them. You would rather wait for others to notice when things need to be taken care of than take the initiative. You will contribute to a positive laboratory environment if specifically asked to do so.

Council to Leave – You are oblivious to problems in the lab and do not notice or care when obvious things need to be attended to. You contribute in no way to making the lab a better environment in which to conduct research and impact the lab functioning detrimentally.
Please fill out the following form. My goal is to help you to succeed in graduate school and beyond. The information below will help me to help you succeed and to open up lines of communication. After you fill out the form and return it to me we will meet and discuss. After our meeting I will write a letter summarizing our meeting. The goal is to make this a helpful and rewarding experience, to improve our advisor/advisee relationship, to improve your graduate school experience in general, to make my expectations clear, and for you to have a clear idea of your goals and priorities, and your strengths and weakness.

1) What did you accomplish in the last ~6 months? Is this consistent with or different from your goals and priorities for this time period? If it is different, why did it change?

2) What are your goals for the next 6 months concerning research, coursework and outreach activities? Please list in approximate order of priority. For research, also list papers in prep, conference abstracts, proposals, etc.

3) Please list any additional personal career development goals you may have, such as working on your CV, web site, public speaking skills, work/life balance, etc.

4) What are your long-term career goals? It’s OK if you don’t know, or if this changes every 6 months, but if you do know I can try to steer you in the right direction.

5) What is working about our advisor/advisee relationship?

6) What is not working about our advisor/advisee relationship? What can we change to make it work better?

7) Would you like to see anything done differently in how I am running the group, such as group meetings, lab organization and communication, etc?

8) What are your vacation plans for the next 6 months?

9) Please note here anything else you would like to discuss (such as travel to meetings).
Please fill out the following form. My goal is to help you to succeed in graduate school and beyond. The information below will help me to help you succeed and to open up lines of communication. After you fill out the form and return it to me we will meet and discuss. After our meeting I will write a letter summarizing our meeting. The goal is to make this a helpful and rewarding experience, to improve our advisor/advisee relationship, to improve your graduate school experience in general, to make my expectations clear, and for you to have a clear idea of your goals and priorities, and your strengths and weakness.

1) What did you accomplish in the last 6 months? Is this consistent with or different from your goals and priorities for this time period? If it is different, why did it change?

2) What are your goals for graduation? When do you expect to graduate? What papers do you expect to write between now and then? Please estimate a timeline for completion of this work.

3) What are your goals for the next 6 months concerning research, coursework and outreach activities? Please list in approximate order of priority. For research, also list papers in prep, conference abstracts, proposals, etc.

4) Please list any additional personal career development goals you may have, such as working on your CV, web site, public speaking skills, work/life balance, etc.

5) What type of jobs are you looking for after graduation? How are you going about finding a job? What is the timeline for these activities?

6) What are your long-term career goals? It’s OK if you don’t know, or if this changes every 6 months, but if you do know I can try to steer you in the right direction.

7) What is working about our advisor/advisee relationship?

8) What is not working about our advisor/advisee relationship? What can we change to make it work better?
9) Would you like to see anything done differently in how I am running the group, such as group meetings, lab organization and communication, etc?

10) What are your vacation plans for the next 6 months?

11) Please note here anything else you would like to discuss (such as travel to meetings).
Graduate Scholarly Activity Report

Section 1

Please fill out all sections. The items on this page may either be private (default) or you may choose to make them public on your directory detail page. Your advisor(s) will be able to view this information, as will Student Services and the GPC.

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please enter any courses your taught or assisted with. The fields are Quarter Year, Dept, Course #, Credits, Enrollment, % Responsible, Co-Instructor.</td>
<td></td>
</tr>
</tbody>
</table>

Class Talks

<table>
<thead>
<tr>
<th>Talk</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please enter any course talks your gave. The fields are Date(s), Dept, Course #, Location, Type of Talk or Title.</td>
<td></td>
</tr>
</tbody>
</table>

Awards

<table>
<thead>
<tr>
<th>Award</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please list any awards or honors you have received. The fields are Award Name, Date Awarded, Awarding Body/Group, Description of Award.</td>
<td></td>
</tr>
</tbody>
</table>

Professional Presentations

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please list any invited, conference, event, or other non-class talks or posters you have presented.</td>
<td></td>
</tr>
</tbody>
</table>

Service

<table>
<thead>
<tr>
<th>Service</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please list any service you have performed. Service is broadly defined and can include serving on committees, assisting or leading conferences, outreach, and refereeing for journals.</td>
<td></td>
</tr>
</tbody>
</table>
Recent Publications (5 years)

Please list any recent publications you may have. You should enter each reference in a standard format of your choice.

<table>
<thead>
<tr>
<th>Private</th>
</tr>
</thead>
</table>

Research Interests

Please briefly describe your research interests. This description can be more detailed than the main directory listing.

<table>
<thead>
<tr>
<th>Private</th>
</tr>
</thead>
</table>

Personal Statement

Please enter your personal statement here. It should cover your current research, teaching, and service activities, as well as future goals for these categories.

<table>
<thead>
<tr>
<th>Private</th>
</tr>
</thead>
</table>

CV

Please enter your CV here. Formatting will not be preserved so you should double check that it is still readable.

<table>
<thead>
<tr>
<th>Private</th>
</tr>
</thead>
</table>
Section 2

Biographical

<table>
<thead>
<tr>
<th>Admitted (ex Aut/2010):</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Quarters on Leave:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Academic Progress

<table>
<thead>
<tr>
<th>Program:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Specialty:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificates or Dual-Title Programs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current GPA:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experiential Learning

Milestones - Completed or Anticipated

For the following items please enter your answer in either Qtr/Year format (ex Aut/2010) or enter N/A if it is not applicable to you.

<table>
<thead>
<tr>
<th>Prelim Exam:</th>
<th>- Completed</th>
<th>- Anticipated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Exam:</td>
<td>- Completed</td>
<td>- Anticipated</td>
</tr>
<tr>
<td>MS Paper or Thesis Submitted:</td>
<td>- Completed</td>
<td>- Anticipated</td>
</tr>
<tr>
<td>General Exam:</td>
<td>- Completed</td>
<td>- Anticipated</td>
</tr>
<tr>
<td>PhD Exam:</td>
<td>- Completed</td>
<td>- Anticipated</td>
</tr>
<tr>
<td>PhD Thesis Submitted:</td>
<td>- Completed</td>
<td>- Anticipated</td>
</tr>
</tbody>
</table>

Committee
Please indicate non-UW members with an asterisk (*). Please note that the Committee Chairs must be in our database for access and email purposes. If someone is not listed here please email their name and email address to comphelp@ess.washington.edu so that they may be added.

<table>
<thead>
<tr>
<th>Type</th>
<th>Supervisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee Chair:</td>
<td></td>
</tr>
<tr>
<td>Committee Co-Chair:</td>
<td></td>
</tr>
<tr>
<td>Committee GSR:</td>
<td></td>
</tr>
<tr>
<td>Committee Member:</td>
<td></td>
</tr>
<tr>
<td>Last Meeting with Committee:</td>
<td></td>
</tr>
</tbody>
</table>

Please provide an explanation if:

- Passed the Prelim Exam, but have not established your M.S. or Ph.D. Supervisory Committee. Why not?
- Earned an M.S. degree, but have not established your Ph.D. Supervisory Committee. Why not?

Annual Activity:

Answer the following questions. Please be detailed, there should be at least a couple paragraphs.

- What research progress have you made over the last 12 months? This can include field/lab/theoretical work, papers/abstracts, and graduate program milestones.
- What department or community activities have you participated in over the last 12 months? This can include committees, outreach, and event organizing.
- What goals do you have for the coming year, especially for research progress and department/community activities?
You may download and edit your prior submission if you turned one in rather than starting over each year.

The 2013-2014 password is

Section 3

Funding Information

Current Year

<table>
<thead>
<tr>
<th>Type</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source or Course Pref</td>
<td>Select an Option</td>
<td>Select an Option</td>
<td>Select an Option</td>
<td>Select an Option</td>
</tr>
</tbody>
</table>

Notes

Next Year

<table>
<thead>
<tr>
<th>Type</th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source or Course Pref</td>
<td>Select an Option</td>
<td>Select an Option</td>
<td>Select an Option</td>
<td>Select an Option</td>
</tr>
</tbody>
</table>

Notes
Section 4

Faculty Review

Please note that students are allowed to review all documents relating to their annual progress.

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the student's progress satisfactory?</td>
<td>Yes No</td>
</tr>
<tr>
<td>Concerns or Comments about the student's progress?</td>
<td></td>
</tr>
<tr>
<td>I have met with my student and discussed their progress.</td>
<td>Sign using your email</td>
</tr>
<tr>
<td>The funding plans are accurate to the best of my knowledge.</td>
<td>Sign using your email</td>
</tr>
</tbody>
</table>

Return to Landing Page
“Collaborating with Students,” from *On the Cutting Edge: Strong Undergraduate Geoscience Teaching*, National Association of Geoscience Teachers
http://serc.carleton.edu/NAGTWorkshops/earlycareer/research/students.html#guidelines

Resources

Faculty guidelines for graduate students, from

- [Richelle Allen–King, University at Buffalo, SUNY.](http://example.com) (Microsoft Word 49kB Sep15 10)
 Richelle's guidelines welcome students to her lab group and outline her expectations for them and for herself, and also alert them to her pet peeves.

- [Kristie Franz, Iowa State University.](http://example.com) (Microsoft Word 39kB Jun26 09)
 Kristie's guidelines explain her philosophy, describe her expectations re: time management and progress, and also spell out what she will provide for copying, printing, and other day-to-day expenses.

- [Tracy Gregg, University at Buffalo, SUNY.](http://example.com) (Microsoft Word 26kB Oct4 05)
 Tracy's guidelines spell out her expectations for her students re: her lab space and equipment, weekly meetings, time management, and communication.

- [Todd Halihan, Oklahoma State University.](http://example.com) (Microsoft Word 36kB Nov10 05)
 Todd's guidelines take a blunt, no-holds-barred approach, alerting his students to his expectations and explaining why he expects so much of them. The tone of these written guidelines is balanced by Todd's twice-daily availability to his students.

- [Kathy Licht, Indiana University – Purdue University Indianapolis.](http://example.com) (Microsoft Word 28kB Dec1 05)
 Kathy's guidelines explain what her students can expect from her, and what she expects from them in return, particularly in relation to time and lab equipment.

Faculty guidelines for undergraduate students, from

- [Sarah Carmichael, Appalachian State University.](http://example.com) (Acrobat (PDF) 105kB Jun26 09)
 Sarah's guidelines address time management, her open door policy, the care and use of equipment, and the importance of keeping detailed field and lab notes. She also includes an undergraduate research contract that specifies her policies for intellectual property and authorship.

- [Lisa Gilbert, Williams College and Mystic Seaport.](http://example.com) (Microsoft Word 29kB May15 09)
 Lisa's guidelines are written specifically for undergraduate researchers. They set a
welcoming tone, explain some of the conventions of scientific research, and let her students know what she expects of them and what they can expect from her.

- **Barb Tewksbury, Hamilton College.** (Microsoft Word 39kB Jun10 09)
 Barb's guidelines, for undergraduate students researchers, address collaborative relationships, managing a research project, lab and field issues, intellectual property, and ethics.

Guide to Research for Undergraduates

- [WebGURU](https://www.webguru.com) is an extensive online guide to the research process, written for undergraduate students. It is both a "how-to" guide and a description of what to expect, in terms of working on a research team, intellectual property, securing funding, lab safety, communicating results, and much more.

Books and articles

- *Chemical & Engineering News* (Volume 85, Number 6, pp. 39–41, February 5, 2007) asked several faculty members from around the world about *Building and Maintaining a Productive Lab*. Their responses are digested into a list of the top 10 tips. The article also includes a brief list of suggested further reading.

- The Committee on Science, Engineering, and Public Policy (CoSEPuP) of the National Research Council has written a thorough, peer-reviewed report called *Adviser, Teacher, Role Model, Friend: On Being a Mentor to Students in Science and Engineering*.

- [What Mentors Do](https://www.tomorrowsprofessor.com/mentoring.html), by Lois J. Zachary, and part of Rick Reis' Tomorrow's Professor email list, looks at some of the ways in which mentors can facilitate student learning.

- The Council on Undergraduate Research (CUR) has multiple publications on *Undergraduate Research Practices*, which describe several successful models for undergraduate research.

- The Council on Undergraduate Research (CUR) also has the "How to" series, which features publications on mentoring undergraduate research.

- [The high-leverage impact of one "non-traditional" student on an academic research program](https://www.tomorrowsprofessor.com/mentoring.html), an article from Rick Reis' "Tomorrow's Professor" Mailing List, describes the unexpected benefits mechanical engineering Professor Lisa Pruitt (UC-Berkeley) gained by accepting a physically disabled graduate student – including the growth of her research program.
• **Kurdziel and Libarkin (JGE, 2002) article on mentoring undergraduate researchers** – this link takes you to a description in the SERC Catalog, from which you can follow a link to download the full text of the article.

• The [Online Ethics Center](#) has a wealth of resources related to ethics in scientific research, including a page on [responsible authorship](#).

• [Nature's Guide for Mentors](#) explores the characteristics of excellent mentoring, citing many examples.

• [Advising the Dissertation Student Who Won't Finish](#), an article from the Chronicle of Higher Education, addresses the important issue of how best to serve students who run aground on the way to a PhD. In particular, the author asserts that stigmatizing the act of leaving a PhD program can interfere with students making the best choices for themselves.

• [The Care and Maintenance of Your Adviser](#), by Hugh Kearns & Maria Gardiner, published in Nature (2011), has many helpful suggestions for students about how to get the advising they need. You could share it with your advisees, or even use it as a springboard for a group discussion with them.